assignmentssolution@gmail.com

Get Assignments and Projects prepared by experts at a very nominal fee.

More than 8 years in assisting assignments and projects/dissertation/thesis of MBA,BBA,BCA,MCA,PhD and others-

Contact us at : Email : assignmentssolution@gmail.com

Help for : SMU, IIBM,IMT, NMIMS, NIBM ,KSBM, KAIZAN, ISBM, SYMBIOSIS, NIMS, IGNOU, XAVIER, XIBMS, ISM, PSBM, NSBM, NIRM, ISBM, ISMRC, ICMIND, UPES and many others.

Help in : Assignments, projects, M.Phil,Ph.D disseration & thesis,case studies

Courses,MBA,BBA,PhD,MPhil,EMBA,MIB,DMS,MMS,BMS,GDS etc

Contact us at : Email : assignmentssolution@gmail.com



Thursday 11 January 2018

AIMA assignments : Contact us for answers at assignmentssolution@gmail.com

DRM 04

Introduction to SPSS

Assignment - I

Assignment Code: 2017DRM04B1                               Last Date of Submission: 15th November 2017
                                                   Maximum Marks: 100


Attempt all the questions.

SECTION – A (25 marks for each question)


1.    a)     Explain the steps that are needed in order to enter data in an SPSS file.
b)     Explain how data from an Excel file can be imported into an SPSS file. Explain what precautions need to be taken for this.

2.     Explain the difference between “Descriptive statistics” and “frequency” and “Explore” options that are available in SPSS when we click the Analyze button.



SECTION-B
Case Study (50 marks)

A company was interested in understanding the level of dissemination of information different between superior group, peer group and subordinate group. The data obtained was analysed using Analysis of variance technique. The results of such an analysis are given below.
   
measure of dissemination
Levene Statistic    df1    df2    Sig.
3.253    2    21    .059
    ANOVA
measure of dissemination
     Sum of Squares    df    Mean Square    F    Sig.
Between Groups    44.645    2    22.323    58.210    .000
Within Groups    8.053    21    .383        
Total    52.698    23             
   

Multiple Comparisons
Dependent Variable: measure of dissemination
     (I) level of employee    (J) level of employee    Mean Difference (I-J)    Std. Error    Sig.
                        
Tukey HSD    superior    Peer    2.43125(*)    .30963    .000
          subordinate    3.20000(*)    .30963    .000
     Peer    superior    -2.43125(*)    .30963    .000
          subordinate    .76875    .30963    .054
     subordinate    superior    -3.20000(*)    .30963    .000
          Peer    -.76875    .30963    .054
LSD    superior    Peer    2.43125(*)    .30963    .000
          subordinate    3.20000(*)    .30963    .000
     Peer    superior    -2.43125(*)    .30963    .000
          subordinate    .76875(*)    .30963    .022
     subordinate    superior    -3.20000(*)    .30963    .000
          Peer    -.76875(*)    .30963    .022
*The mean difference is significant at the .05 level.

    Tests of Normality

     level of employee    Kolmogorov-Smirnov(a)    Shapiro-Wilk
          Statistic    df    Sig.    Statistic    df    Sig.
measure of dissemination    superior    .178    8    .200(*)    .958    8    .795
     Peer    .277    8    .071    .899    8    .282
     subordinate    .151    8    .200(*)    .910    8    .356
*  This is a lower bound of the true significance.
a  Lilliefors Significance Correction

Based on the above answer the following questions:

a)     Write the null and alternative hypothesis for the above problem.
b)     For the above analysis, several assumptions have been made. Check from the data given above whether these assumptions are met or not. 
c)     What is your conclusion based on the ANOVA test carried out?
d)      Discuss the post hoc tests that have carried out and its implications.
                                 

               
DRM 04

Introduction to SPSS

Assignment - II

Assignment Code: 2017DRM04B2                               Last Date of Submission: 15th November 2017
                                                   Maximum Marks: 100


Attempt all the questions.


SECTION-A (25 marks for each question)

1.     Enumerate the steps that are required to perform Two way ANOVA with interaction effects.

2.     If a data is to be converted from Scale information to Nominal information, discuss the steps by which this could be done in SPSS. For example age is collected from respondents in terms of years and this needs to be converted into “Young (15 to 30years)”, “middle age (31 to 50)” and “old (above 51 years)”. Explain how did data conversion will take place?

SECTION-B (50 marks)

A student after passing out from his MBA course had been placed decently in a reputed organization but was posted in the city of Jaipur which was not his home town. He had also recently got married and therefore needed family accommodation. Even though this salary payable to him by his employer was quite decent, the family nevertheless thought that they need not spend a lot of money in purchasing a flat, especially because the company was providing him free transport from his place of residence to work and back. The family all through being living in a luxury having a spacious flat and therefore decided to purchase an independent house for their stay. As the student had already read considerable amount of Statistics he thought he could estimate what would be the price of an independent house based on the data that he collected on the following variables from nearby locations.

The variables that he had collected data on included:
•    Y = Actual sale value of the house (Rs.)
•    X1 = Number of rooms
•    X2 = number of bedrooms
•    X3 = number of baths
•    X4 = age of the building in months
•    X5 = assessed value  (Rs.)
•    X6 = area of the house in square feet

He then decided to use SPSS to run a regression model so that he is able to predict what would be the actual sale value of the house based on the various independent variables as mentioned above. He decided to carry out this exercise both Stepwise as well as by incorporating all the independent variables. The relevant output for Stepwise is given in Table 1 to 4 and with all the independent variables in Table 5 to 7. 



Questions:
a)    To what extent each of the model help in explaining the predictive variable i.e. the price of the house.                                                   
b)    Explain whether each of the models indicate significant relationship  
c)    Explain which of the variables help in significantly explaining the predictive variable.
d)    How would you determine the relative importance of each of the variables.
e)    If you were to choose a model from above, which one would you choose and why.
                                                                                                          
Model Summary Table -1
    R    R Square    Adjusted R Square    Std. Error of the Estimate    Change Statistics                   
Model                       R Square Change    F Change    df1    df2    Sig. F Change   
1    .694a    .482    .460    8927.02    .482    21.41    1    23    .000   
2    .759b    .576    .538    8258.08    .094    4.87    1    22    .038   
a  Predictors: (Constant), number of rooms
b  Predictors: (Constant), number of rooms , assessed value
ANOVA Table -2
Model        Sum of Squares    df    Mean Square    F    Sig.   
1    Regression    1706132093.562    1    1706132093.562    21.409    .000a   
    Residual    1832909506.438    23    79691717.671           
    Total    3539041600.000    24               
2    Regression    2038729092.558    2    1019364546.279    14.948    .000b   
    Residual    1500312507.442    22    68196023.066           
    Total    3539041600.000    24               
a  Predictors: (Constant), number of rooms
b  Predictors: (Constant), number of rooms , assessed value
c  Dependent Variable: price charged for house
Coefficients Table -3
        Unstandardized Coefficients        Standardized Coefficients    t    Sig.       
Model        B    Std. Error    Beta            Partial   
1    (Constant)    116939.270    8703.932        13.435    .000       
    number of rooms     9567.167    2067.681    .694    4.627    .000    .694   
2    (Constant)    103949.099    9971.443        10.425    .000       
    number of rooms     8568.479    1965.474    .622    4.359    .000    .681   
    assessed value     .125    .056    .315    2.208    .038    .426   
a  Dependent Variable: price charged for house
Excluded Variables Table -4
        Beta In    t    Sig.    Partial Correlation   
Model                       
1    number of bedrooms     .196    .709    .486    .149   
    number of bathrooms    .127    .803    .430    .169   
    age of building in months    .153    .909    .373    .190   
    assessed value     .315    2.208    .038    .426   
    carpet area in square feet    .355    1.691    .105    .339   
2    number of bedrooms     .092    .349    .730    .076   
    number of bathrooms    .072    .475    .640    .103   
    age of building in months    .212    1.384    .181    .289   
    carpet area in square feet    .219    1.005    .327    .214   
a  Predictors in the Model: (Constant), number of rooms
b  Predictors in the Model: (Constant), number of rooms , assessed value
c  Dependent Variable: price charged for house
Model Summary Table 5
    R    R Square    Adjusted R Square    Std. Error of the Estimate    Change Statistics                    
Model                    R Square Change    F Change    df1    df2    Sig. F Change   
A    .794    .630    .506    8532.5127    .630    5.102    6    18    .003a   

a  Predictors: (Constant), carpet area in square feet, age of building in months, number of bathrooms, assessed value of flat, number of bedrooms in flat, number of rooms in flat
ANOVA Table 6
Model        Sum of Squares    df    Mean Square    F    Sig.   
A    Regression    2228573701.721    6    371428950.287    5.102    .003a   
    Residual    1310467898.279    18    72803772.127           
    Total    3539041600.000    24               
a  Predictors: (Constant), carpet area in square feet, age of building in months, number of bathrooms, assessed value of flat, number of bedrooms in flat, number of rooms in flat
b  Dependent Variable: price charged for flat

Coefficients Table -7
        Unstandardized Coefficients        Standardized Coefficients    T    Sig.       
Model        B    Std. Error    Beta            Partial   
A    (Constant)    100162.048    11921.851        8.402    .000       
    number of rooms in flat    4910.839    4326.928    .356    1.135    .271    .258   
     number of bedrooms in flat    851.934    5650.598    .043    .151    .882    .036   
     number of bathrooms    2419.742    7058.835    .055    .343    .736    .081   
     age of building in months    91.181    78.757    .195    1.158    .262    .263   
     assessed value of flat    .111    .067    .280    1.659    .114    .364   
     carpet area in square feet    12.292    15.172    .186    .810    .428    .188   
a  Dependent Variable: price charged for flat

No comments:

Post a Comment